predictor_competition.Rd
NOTE: This function is deprecated. Please use SfL::predictor_competition2
instead.
Compare the predictive strength of two independent variables in a minimal linear (mixed effects) regression model. The function creates two identical
lm
or lmer
objects, only differing in fixed effects structure. Then, a log-likelihood test is used to decide which fixed effect structure is better fit to
predict the dependent variable.
predictor_competition(
data,
dependent,
independent1,
independent2,
random.intercept = NULL,
random.slope = 1
)
The original data set for both models.
The dependent variable for both models.
The independent variable(s), i.e. the fixed effects, of the 1st model.
The independent variable(s), i.e. the fixed effects, of the 2nd model.
The random intercept for both models. If not random intercept is specified, regular linear models are fitted.
The random slope for both models. The default assumes no random slope.
A dataframe containing npar, AIC, BIG, logLik, deviance, Chisq, Df, and Pr(>Chisq). Usually used without variable assignment.
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1-48. doi:10.18637/jss.v067.i01.
data("data_s")
# example 1: two similarly well fit predictors
predictor_competition(data = data_s, dependent = "sDur", independent1 = "typeOfS", independent2 = "pauseBin", random.intercept = "speaker")
#> ℹ Both predictors, typeOfS & pauseBin, are equally good at predicting sDur.
#> Data: data
#> Models:
#> mdl2: sDur ~ pauseBin + (1 | speaker)
#> mdl1: sDur ~ typeOfS + (1 | speaker)
#> npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
#> mdl2 4 -500.04 -487.99 254.02 -508.04
#> mdl1 5 -475.28 -460.22 242.64 -485.28 0 1 1
# example 2: one predictor is better than the other
predictor_competition(data = data_s, dependent = "sDur", independent1 = "typeOfS", independent2 = "slideNumber", random.intercept = "speaker")
#> ℹ We have a winner!
#> Data: data
#> Models:
#> mdl2: sDur ~ slideNumber + (1 | speaker)
#> mdl1: sDur ~ typeOfS + (1 | speaker)
#> npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
#> mdl2 4 -458.17 -446.13 233.08 -466.17
#> mdl1 5 -475.28 -460.22 242.64 -485.28 19.109 1 1.235e-05 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1